Quantitative Trait Loci Underlying Seed Sugars Content in “MD96-5722” by “Spencer” Recombinant Inbred Line Population of Soybean
نویسندگان
چکیده
Sucrose, raffinose, and stachyose are important soluble sugars in soybean [Glycine max (L.) Merr.] seeds. Seed sucrose is a desirable trait for taste and flavor. Raffinose and stachyose are undesirable in diets of monogastric animals, acting as anti-nutritional factors that cause flatulence and abdominal discomfort. Therefore, reducing raffinose and stachyose biosynthesis is considered as a key quality trait goal in soy food and feed industries. The objective of this study was to identify genomic regions containing quantitative trait loci (QTL) controlling sucrose, raffinose, and stachyose in a set of 92 F5:7 recombinant inbred lines (RILs) derived from a cross between the lines “MD965722” and “Spencer” by using 5376 Single Nucleotide Polymorphism (SNP) markers from the Illumina Infinium SoySNP6K BeadChip array. Fourteen significant QTL were identified and mapped on eight different linkage groups (LGs) and chromosomes (Chr). Three QTL for seed sucrose content were identified on LGs N (Chr3), K (Chr9), and E (Chr15). Seven QTL were identified for raffinose content on LGs D1a (Chr1), N (Chr3), C2 (Chr6), K (Chr9), B2 (Chr14), and J (Chr16). Four QTL for stachyose content were identified on LG D1a (Chr1), C2 (Chr6), H (Chr12), and B2 (Chr14). Selection for beneficial alleles of these QTLs could facilitate breeding strategies to develop soybean lines with higher concentrations of sucrose and lower levels of raffinose and stachyose. Corresponding author.
منابع مشابه
Quantitative trait loci underlying resistance to sudden death syndrome (SDS) in MD96-5722 by ‘Spencer’ recombinant inbred line population of soybean
The best way to protect yield loss of soybean [Glycine max (L.) Merr.] due to sudden death syndrome (SDS), caused by Fusarium virguliforme (Aoki, O'Donnel, Homma & Lattanzi), is the development and use of resistant lines. Mapping quantitative trait loci (QTL) linked to SDS help developing resistant soybean germplasm through molecular marker-assisted selection strategy. QTL for SDS presented her...
متن کاملAnalysis of natural allelic variation of Arabidopsis seed germination and seed longevity traits between the accessions Landsberg erecta and Shakdara, using a new recombinant inbred line population.
Quantitative trait loci (QTL) mapping was used to identify loci controlling various aspects of seed longevity during storage and germination. Similar locations for QTLs controlling different traits might be an indication for a common genetic control of such traits. For this analysis we used a new recombinant inbred line population derived from a cross between the accessions Landsberg erecta (Le...
متن کاملQuantative trait loci of seed traits for soybean in multiple environments.
Seed length and seed width are an important factor to the soybean yield. So the quantitative trait loci (QTL) location for seed length and seed width could assistant the breeding of soybean. In this study, the QTL underlying seed length and seed width were studied. A recombinant inbred line population of soybeans derived from a cross between the American semi-draft cultivars Charleston and Dong...
متن کاملIdentification of Major Quantitative Trait Loci for Seed Oil Content in Soybeans by Combining Linkage and Genome-Wide Association Mapping
Soybean oil is the most widely produced vegetable oil in the world and its content in soybean seed is an important quality trait in breeding programs. More than 100 quantitative trait loci (QTLs) for soybean oil content have been identified. However, most of them are genotype specific and/or environment sensitive. Here, we used both a linkage and association mapping methodology to dissect the g...
متن کاملIdentification of quantitative trait loci associated with boiled seed hardness in soybean
Boiled seed hardness is an important factor in the processing of soybean food products such as nimame and natto. Little information is available on the genetic basis for boiled seed hardness, despite the wide variation in this trait. DNA markers linked to the gene controlling this trait should be useful in soybean breeding programs because of the difficulty of its evaluation. In this report, qu...
متن کامل